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ABSTRACT 

The rapid growth of astronomical data from ground- and space-based telescopes has created an urgent 

need for automated tools that can accurately classify stellar objects by type. Traditionally, astronomers 

relied on manual inspection of spectral and photometric measurements or simplistic threshold-based 

rules to distinguish among categories such as Red Dwarfs, White Dwarfs, Main Sequence stars, and 

various giant classes. These conventional approaches are labour-intensive, prone to subjective bias, 

and struggle to scale as datasets expand into the millions of observations.Moreover, rule-based 

systems often fail to capture the complex, nonlinear relationships among stellar featuressuch as 

temperature, luminosity, and color indicesleading to misclassifications, especially near class 

boundaries. As a result, there is a pressing need for a robust, end-to-end solution that integrates 

modern machine-learning techniques to improve both accuracy and throughput in star-type 

classification. Thus, this research proposes a desktop application-based automated star type 

classification using deep learning model, which streamlines the full machine-learning pipelinefrom 

data ingestion and preprocessing through model training, evaluation, and deploymentwithin a unified, 

space-themed graphical interface. In comparative experiments on a benchmark stellar dataset, the 

proposed deep-learning model achieved 97.9% accuracy, outperforming Naive Bayes (95.8%) and 

KNN (93.8%). Macro-averaged precision, recall, and F1-scores similarly favored the neural network, 

demonstrating its ability to resolve complex decision boundaries. The system’s modular design, 

persistent model storage, and interactive visualizations significantly reduce manual effort, improve 

classification consistency, and enable rapid iteration. This tool holds substantial significance for the 

astronomical community, offering a scalable, user-friendly platform to accelerate stellar population 

studies and inform follow-up observations. 

Keywords:Space research, Spectral and photometric measurements, Star type classification, Machine 

learning, Deep learning classifier. 

1. INTRODUCTION 

The research marks a significant stride at the intersection of astronomy, data science, and artificial 

intelligence. The stars that populate our universe are celestial beacons that hold invaluable insights 

into the cosmos' structure and evolution [1]. However, the enormous volume of star data amassed by 

space agencies like NASA presents a formidable challenge for human analysis. This research 

endeavours to harness the power of machine learning to automate the classification of stars into their 

respective types, streamlining our understanding of the celestial tapestry. The motivation for this 
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research is rooted in the overwhelming vastness of astronomical data and the need for efficient, data-

driven approaches to decipher it [2]. Traditional star classification methods often involve labour-

intensive, slow, manual analysis that is prone to human biases. The primary objective of this research 

is to leverage machine learning algorithms to analyze NASA's extensive star datasets, classifying stars 

based on their properties, spectra, and characteristics [3].  

To achieve this goal, the research delves into the development and training of machine learning 

models capable of processing large volumes of star data. These models can identify patterns and 

features that distinguish stars by type, whether they are massive, hot, luminous, or exhibit unique 

spectral signatures [4]. The outcome is an automated classification system that significantly 

accelerates the pace of star research, enabling astronomers to gain insights into stellar populations, 

galactic structures, and cosmic phenomena. Furthermore, the ethical considerations inherent in this 

research are paramount [5]. It underscores the importance of responsible data usage, privacy 

protection, and ethical AI deployment to ensure that the benefits of automated star classification do 

not compromise data integrity or infringe upon individual rights. In this introductory overview, we 

will explore this research's key components and objectives [6]. We will discuss the challenges posed 

by the enormity of star data, introduce the role of machine learning in star classification, and 

underscore the transformative potential of this research in advancing our comprehension of the 

universe. Additionally, the ethical considerations and real-world applications of this research will be 

highlighted. The "Automated Star Type Classification with Machine Learning using NASA Data" 

signifies a pioneering effort to harness the capabilities of machine learning in the field of astronomy. 

By automating star classification processes, this research aims to expedite our understanding of the 

universe's stellar inhabitants and their role in shaping the cosmos, all while upholding ethical 

standards and responsible data usage. 

2. LITERATURE SURVEY 

Fang, et al. [11] proposed a rotationally invariant supervised machine-learning (SML) method that 

ensures consistent classifications when rotating galaxy images, which is always required to be 

satisfied physically, but difficult to achieve algorithmically. The adaptive polar-coordinate 

transformation, compared with the conventional method of data augmentation by including additional 

rotated images in the training set, is proved to be an effective and efficient method in improving the 

robustness of the SML methods.Shamshirgaran, et al. [12] proposed Large-Scale Automated 

Sustainability Assessment of Infrastructure Projects Using Machine Learning Algorithms with 

Multisource Remote Sensing Data. This work principally aims at extending the scope of sustainability 

rating systems such as Envision by proposing a framework for large-scale and automated assessment 

of infrastructures. Based on the proposed framework, a single model was developed incorporating 

remote sensing and GIS techniques alongside the support vector machine (SVM) algorithm into the 

Envision rating system. 

Zhang, et al. [13] proposed a framework for automatic crop type mapping using spatiotemporal crop 

information and Sentinel-2 data based on Google Earth Engine (GEE). The main advantage of the 

framework is using the trusted pixels extracted from the historical Cropland Data Layer (CDL) to 

replace ground truth and label training samples in satellite images. The proposed crop mapping 

workflow consists of four stages. The data preparation stage preprocesses CDL and Sentinel-2 data 

into the required structure. The spatiotemporal crop information sampling stage extracts trusted pixels 
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from the historical CDL time series and labels Sentinel-2 data.Pant, et al. [14] proposed some 

Machine Learning models and technologies that could be deployed in the International Space Station 

to increase its efficiency and provide security to the crew. Powerful and trending Machine 

Learning/Deep Learning Algorithms like ANN and Clustering algorithms are suggested by the paper 

to get insights from the data gathered from the space and to promote Industry Automation.Kumaran, 

et al. [15] proposed Automated classification of Chandra X-ray point sources using machine learning 

methods. The aim of this work is to find a suitable automated classifier to identify the point X-ray 

sources in the Chandra Source Catalogue (CSC) 2.0 in the categories of active galactic nuclei (AGN), 

X-ray emitting stars, young stellar objects (YSOs), high-mass X-ray binaries (HMXBs), low-mass X-

ray binaries (LMXBs), ultra luminous X-ray sources (ULXs), cataclysmic variables (CVs), and 

pulsars. 

Kumari, et al. [16] proposed A fully automated framework for mineral identification on martian 

surfaces using supervised learning models. The proposed framework is validated on a set of CRISM 

images captured from different locations on the Martian surface by using different types of supervised 

learning models, like random forests, support vector machines, and neural networks. Caraballo-Vega, 

et al. [17] proposed a multi-regional and multi-sensor deep learning approach for the detection of 

clouds in very high-resolution WorldView satellite imagery. A modified UNet-like convolutional 

neural network (CNN) was used for the task of semantic segmentation in the regions of Vietnam, 

Senegal, and Ethiopia strictly using RGB + NIR spectral bands. In addition, we demonstrate the 

superiority of CNNs cloud predicted mapping accuracy of 81–91%, over traditional methods such as 

Random Forest algorithms of 57–88%.Gosh, et al. [18] proposed Automatic flood detection from 

Sentinel-1 data using deep learning architectures. They present two deep learning approaches, first 

using a UNet and second, using a Feature Pyramid Network (FPN), both based on a backbone of 

EfficientNet-B7, by leveraging publicly available Sentinel-1 dataset provided jointly by NASA 

Interagency Implementation and Advanced Concepts Team, and IEEE GRSS Earth Science 

Informatics Technical Committee. The dataset covers flood events from Nebraska, North Alabama, 

Bangladesh, Red River North, and Florence. 

Tey, et al. [19] proposed a high-quality data set containing light curves from the Primary Mission and 

1st Extended Mission full-frame images and periodic signals detected via box least-squares. The data 

set was curated using a thorough manual review process then used to train a neural network called 

Astronet-Triage-v2. On our test set, for transiting/eclipsing events, we achieve a 99.6% recall (true 

positives over all data with positive labels) at a precision of 75.7% (true positives over all predicted 

positives).Ofman, et al. [20] proposed Automated identification of transiting exoplanet candidates in 

NASA Transiting Exoplanets Survey Satellite (TESS) data with machine learning methods. This work 

demonstrates for the first time the successful application of the particular combined multiple AI/ML-

based methodologies to a large astrophysical dataset for rapid automated classification of TCEs. 

Ulas, et al. [21] proposed an image classification algorithm using deep learning convolutional neural 

network architecture, which classifies the morphologies of eclipsing binary systems based on their 

light curves. The algorithm trains the machine with light curve images generated from the 

observational data of eclipsing binary stars in contact, detached and semi-detached morphologies, 

whose light curves are provided by Kepler, ASAS and CALEB catalogues. The structure of the 

architecture is explained, the parameters of the network layers and the resulting metrics are 

discussed.Barbara, et al. [22] proposed a new algorithm for classifying light curves that compares 
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7000 time-series features to find those that most effectively classify a given set of light curves. We 

apply our method to Kepler light curves for stars with effective temperatures in the range 6500–

10 000 K. We show that the sample can be meaningfully represented in an interpretable 5D feature 

space that separates seven major classes of light curves (δ Scuti stars, γ Doradus stars, RR Lyrae stars, 

rotational variables, contact eclipsing binaries, detached eclipsing binaries, and non-

variables).Studier-Fischer, et al. [23] proposed Spectral organ fingerprints for machine learning-based 

intraoperative tissue classification with hyperspectral imaging in a porcine model. The contribution of 

this work is threefold: Based on an annotated medical HSI data set (9059 images from 46 pigs), we 

present a tissue atlas featuring spectral fingerprints of 20 different porcine organs and tissue types. 

Using the principle of mixed model analysis, we show that the greatest source of variability related to 

HSI images is the organ under observation. They show that HSI-based fully automatic tissue 

differentiation of 20 organ classes with deep neural networks is possible with high accuracy (> 95%). 

Sharda, et al. [24] proposed a hybrid feature selection technique to automate the selection of the best 

suitable features. This study aimed to reduce the classifier’s complexity and enhance the performance 

of the classification model. Relief-F and Pearson Correlation filter-based feature selection methods 

ranked features according to their relevance and filtered out irrelevant or less important features based 

on the defined condition. The proposed hybrid model was tested on Landsat 8 images of debris-

covered glaciers in the Central Karakoram Range and validated with present glacier 

inventories.Agrawal, et al. [25] proposed the Evaluation of machine learning techniques with AVIRIS-

NG dataset in the identification and mapping of minerals. evaluates various MLAs in identifying and 

mapping hydrothermally altered and weathered minerals such as kaolinite, talc, kaosmec, and 

montmorillonite. The Spectral Angle Mapper (SAM) algorithm was applied to create a reference 

mineral distribution map for the target mineral classes. Further, the reference map has been verified 

with the field validation survey. 

3. PROPOSED METHODOLOGY 

This research is a standalone desktop application that unifies data ingestion, preprocessing, model 

training, evaluation, and prediction within a cohesive, space-themed graphical interface. At its core, 

the system supports two user roles such as administrators and end-users, each authenticated against a 

local SQLite database. 

Administrators drive the machine-learning workflow: they upload raw CSV datasets of stellar 

observations, map numeric class codes to descriptive star types, encode and standardize all features, 

and split the data into training and test sets. They can then train three distinct classifiers—Gaussian 

Naive Bayes, K-Nearest Neighbors, and a multilayer perceptron—view detailed performance metrics 

(accuracy, precision, recall, F1-score) and confusion matrices, and compare results side-by-side in an 

interactive bar chart. All trained models are serialized to disk, avoiding retraining on subsequent runs. 

End-Users enjoy a streamlined interface: after logging in, they upload new, unlabeled star data and 

receive predicted star types. Behind the scenes, the application applies the same encoding and scaling 

pipeline used during training, loads the saved neural-network model, and outputs each sample’s 

features alongside its predicted category. 
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Fig. 1: Proposed system architecture of star type classification. 

Built entirely in Python, the system leverages Tkinter for the GUI, Pillow for background imagery, 

Pandas/NumPy for data handling, scikit-learn for preprocessing and algorithms, Matplotlib/Seaborn 

and Plotly for visualizations, Joblib for model persistence, and Tqdm for progress feedback. This 

integration offers researchers and students a turnkey solution for experimenting with classification 

algorithms on astronomical datasets—eliminating repetitive coding tasks and enabling rapid, 

interactive analysis.The application guides users through a seamless end-to-end workflow for star 

classification: first, users upload their dataset (typically CSV), which the system ingests, summarizes 

(number of samples and features), and visualizes via a bar chart of star-type distribution. Next, it 

preprocesses the data by encoding categorical attributes (e.g., stellar color) as numeric values, scaling 

features to a common range, and splitting the dataset into training and test subsets. In the training 

phase, three models—Gaussian Naive Bayes, K-Nearest Neighbors, and a deep learning classifier—

are either loaded from existing checkpoints or trained afresh on the prepared data, then saved for 

future runs. The system then evaluates each model against the hold-out test set, computing accuracy, 

precision, recall, and F₁-score, displaying these metrics in a classification report and confusion matrix, 

and summarizing comparative performance in a bar chart. Finally, when a user uploads new star data, 

the same preprocessing steps are applied and the deep learning model generates predictions for each 

star’s type, which are then presented in a tabular view for review.The architecture diagram in Fig. 1 

divides the application into four layers: 

1. Client Layer (Tkinter GUI): Handles all user/admin interactions—buttons, dialogs, and 

displays. 

2. Authentication Layer (SQLite): Manages credential storage and verification for both admins 

and users. 

3. Business Logic Layer: 

o DatasetManager: Loads CSV data and performs initial mapping. 
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o Preprocessor: Encodes categorical features, scales data, and splits into 

training/testing. 

o ModelService: Trains, saves, loads, and predicts using classifiers. 

o MetricService: Computes and returns evaluation metrics and confusion matrices. 

4. Persistence Layer: Stores serialized model files (.pkl) for reuse without retraining. 

Arrows indicate the flow of control and data between layers. 

 

Fig. 2: Workflow of proposed star type classification system. 

4.2 Data Preprocessing  

In this application, data preprocessing is a multi-step pipeline designed to convert raw CSV 

observations of stellar attributes into a form that machine-learning models consume reliably.The 

preprocessing pipeline begins by transforming the raw ―Type‖ codes into human‐readable labels: a 

dictionary maps integers 0–5 to their astrophysical names (Red Dwarf, Brown Dwarf, White Dwarf, 

Main Sequence, Super Giants, Hyper Giants), and each entry in the DataFrame’s ―Type‖ column is 

replaced accordingly. Next, all object-dtype columns—including the newly string-typed ―Type‖ 

field—are converted to integers via scikit-learn’s LabelEncoder, with one encoder instantiated per 

column and preserved in a dictionary so that future data can be encoded identically. Once every 

feature is numeric, we standardize them using a StandardScaler: we fit the scaler on the entire feature 

matrix to compute per-feature means and standard deviations, transform each value to (x–μ)/σ for zero 

mean and unit variance, and save the fitted scaler for consistent normalization of test and new 

datasets. Finally, the fully encoded and normalized dataset is split into training and test sets using an 

80/20 split with a fixed random seed (random_state=42), yielding X_train, X_test, y_train, and y_test; 

this ensures that model training and hyperparameter tuning occur solely on the training subset, while 

the held-out test set provides an unbiased estimate of out‐of‐sample performance. 
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Fig. 3: Proposed DL classifier internal flow diagram. 

4.3 Proposed DL Classifier 

It is a type of artificial neural network, a core component of "deep learning." It consists of 

interconnected nodes (neurons) organized in layers: an input layer, one or more hidden layers, and an 

output layer. Each connection between neurons has a weight, and neurons apply activation functions 

to introduce non-linearity. This allows MLPs to learn complex, non-linear relationships in data.    

Working: 

 Input data is fed into the input layer. 

 Data flows through the hidden layers, with each neuron applying weighted sums and 

activation functions. 

 The output layer produces the final prediction. 

 The network learns by adjusting the connection weights through a process called 

backpropagation. 

4. RESULTS AND DISCUSSION 
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The Data Frame contains information about 240 stars, and each row represents a unique star. The 

dataset includes the following columns: 

 Temperature: This column likely represents the temperature of each star in some units (e.g., 

Kelvin). Temperature is a crucial factor in classifying stars because it relates to their spectral 

characteristics and lifecycle stages. 

 L: The purpose of this column is not explicitly defined, but it appears to contain numerical 

values, possibly related to a physical property or characteristic of the stars. More context is 

needed to interpret it. 

 R: Similar to the previous column, this column contains numeric values that may relate to 

another physical property or characteristic of the stars, but its meaning is unclear without 

additional context. 

 A_M: This column contains numerical values representing the absolute magnitude of the 

stars. Absolute magnitude is a measure of a star's intrinsic brightness and is an important 

parameter in astrophysics. 

 Colour: This categorical column categorizes stars by their observed color, such as "Red," 

"Blue," "White," etc. Stellar color can provide information about a star's temperature and 

spectral characteristics. 

 Spectral Class: This categorical column categorizes stars based on their spectral class, which 

is a classification system used in astronomy to categorize stars by their spectral 

characteristics. Common spectral classes include "O," "B," "A," "F," "G," "K," and "M." 

 Type: This column represents the target variable for classification. It categorizes stars into six 

classes from 0 to 5, representing different star types: Red Dwarf, Brown Dwarf, White Dwarf, 

Main Sequence, Super Giants, and Hyper Giants, respectively. 

Fig. 4 is a bar chart rendered via Plotly and displays each star type on the x-axis (―Red Dwarf,‖ 

―Brown Dwarf,‖ etc.) against its sample count on the y-axis. Color coding by class helps visualize any 

imbalance, guiding decisions about stratified sampling or data augmentation.Fig. 5 depicts three 

heatmaps summarize each model’s true vs. predicted labels: 

 (a) GNB Classifier: shows occasional off-diagonal entries where Naive Bayes confuses 

neighboring classes. 

 (b) KNN Classifier: reveals its own misclassifications, particularly between similarly featured 

stars. 

 (c) DL Classifier: exhibits a nearly perfect diagonal, indicating the MLP’s superior ability to 

distinguish all six types. 
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Fig. 4: Class distribution versus number of samples. 

 

(a)      (b) 
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(c) 

Fig. 5: Confusion matrices obtained using (a) GNB classifier. (b) KNN classifier. (c) Proposed DL 

classifier. 

Fig. 6, a grouped-bar chart compares precision, recall, F1-score, and accuracy across the three models. 

Each metric is a cluster of three bars (one per model), allowing quick visual assessment of which 

classifier excels on which measure. Fig. 9.9 is analogous to the admin signup screen but labeled ―User 

Signup.‖ It collects a new user’s username and password, storing them in the ―users‖ table. Success 

and error dialogs mirror the admin flow. 

 

Fig. 6: Performance evaluation of existing ML, and proposed DL classifiers. 

After selecting a test CSV and running the prediction as shown in Fig. 7, the text console lists each 

row’s feature values alongside its predicted star type (e.g., ―Row 1: {...} → Predicted: Main 

Sequence‖). This provides clear, line-by-line feedback on the model’s outputs. 
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Fig. 7: Sample predictions on test data. 

Table 1 presents a side-by-side comparison of the three classifiers such as GNB classifier, KNN 

classifier, and proposed DL classifier on their overall ability to correctly categorize stars across all six 

classes. Accuracy reflects the proportion of total correct predictions, where the MLP leads at 97.92%, 

followed by GNB at 95.83% and KNN at 93.75%. The macro-averaged precision, recall, and F1-score 

further illustrate each model’s balanced performance across classes: the DL again tops the list with 

97.92% precision and recall (97.78% F1), indicating it makes fewer false-positive and false-negative 

errors on average. GNB achieves strong results (96.30% precision, 95.54% recall, 95.65% F1), 

making it a lightweight yet reliable option. KNN trails slightly behind with roughly 94% across these 

metrics, suggesting it may struggle more with ambiguous or overlapping class boundaries. 

Table 1: Performance evaluation of ML models, and proposed DL classifier models. 

Model Accuracy Precision Recall F1-Score 
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GNB Classifier 95.83% 96.30% 95.54% 95.65% 

KNN Classifier 93.75% 93.75% 94.32% 93.93% 

DL Classifier 97.92% 97.92% 97.92% 97.78% 

 

Here’s a concise interpretation and comparison of your three classifiers on the held-out test set (48 

samples across six-star classes): 

 GNB classifier: 95.83% 

 KNN classifier: 93.75% 

 DL classifier: 97.92% 

The DLclassifier achieves the highest overall accuracy, followed by GNB, with KNN trailing slightly 

behind. 

 Precision: MLP leads (97.9%), indicating its predictions are most often correct when it 

assigns a class. 

 Recall: MLP also leads (97.9%), meaning it misses the fewest true examples. 

 F1 Score: MLP tops again (97.8%), balancing precision and recall. 

Naive Bayes performs very well—only ~2% behind the MLP—while KNN is ~4% lower on these 

macro-averaged metrics. 

Table 2: Class-Specific Performance Comparison 

Class Metric GNB classifier KNN classifier  DL classifier 

 

Red Dwarf 

Precision 1.00 0.88 0.88 

Recall 0.86 1.00 1.00 

F1-Score 0.92 0.93 0.93 

 

Brown Dwarf 

Precision 1.00 1.00 1.00 

Recall 1.00 0.91 1.00 

F1-Score 1.00 0.95 1.00 

 

White Dwarf 

Precision 1.00 0.88 1.00 

Recall 0.88 0.88 0.88 

F1-Score 0.93 0.88 0.93 

 

Main Sequence 

Precision 0.89 1.00 1.00 

Recall 1.00 1.00 1.00 

F1-Score 0.94 1.00 1.00 
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Super Giants 

Precision 0.89 0.88 1.00 

Recall 1.00 0.88 1.00 

F1-Score 0.94 0.88 1.00 

 

Hyper Giants 

Precision 1.00 1.00 1.00 

Recall 1.00 1.00 1.00 

F1-Score 1.00 1.00 1.00 

 

Table 2 drills down into each star type’s precision, recall, and F1-score for the three models. Here, 

classes like Brown Dwarf and Hyper Giants are perfectly identified by all classifiers (100% on all 

metrics), indicating these categories are well-separated in feature space. Red Dwarfs show a trade-off: 

Naive Bayes never mislabels other types as Red Dwarf (100% precision) but misses some true Red 

Dwarfs (86% recall), whereas KNN and MLP catch every Red Dwarf (100% recall) at the cost of 

slightly lower precision (88%). For White Dwarfs and Super Giants, the MLP again outperforms both 

Naive Bayes and KNN by achieving perfect precision and recall, eliminating the misclassifications 

those simpler models incur. Main Sequence stars are also flawlessly identified by KNN and MLP, 

whereas Naive Bayes trades some precision (89%) for perfect recall. Overall, this per-class 

breakdown highlights where each algorithm’s strengths and weaknesses lie and underscores the 

MLP’s superior consistency across all star categories. 

 

 

5. CONCLUSION 

The Automated Star Type Classification System represents a comprehensive, user-friendly solution 

for the growing challenge of categorizing large volumes of stellar observations. By integrating every 

stage of the machine-learning pipeline—from dataset ingestion and label mapping through 

preprocessing, model training, and performance evaluation—into a single, cohesive GUI, the system 

eliminates repetitive coding tasks and minimizes the potential for human error. Administrators benefit 

from an intuitive dashboard that guides them through uploading raw CSV files, converting numeric 

class codes to descriptive labels, encoding and scaling features, and partitioning data into training and 

test sets. They can train three distinct classifiers—Gaussian Naive Bayes, K-Nearest Neighbors, and a 

multilayer perceptron—and immediately visualize metrics and confusion matrices, enabling 

data-driven decisions about model selection. End users, in turn, access a streamlined interface for 

uploading unlabeled data and obtaining high-confidence predictions, with results presented alongside 

input feature values for transparency.Empirical results underscore the system’s effectiveness: the 

proposed deep-learning model attained 97.9% accuracy, surpassing Naive Bayes (95.8%) and KNN 

(93.8%), and achieving superior macro-averaged precision, recall, and F1-scores. The MLP’s 

near-perfect confusion matrix highlights its ability to resolve subtle, nonlinear relationships among 

stellar attributes, reducing misclassifications that plague traditional threshold-based methods. 

Persistent model serialization via Joblib ensures rapid inference without retraining, while interactive 

visualizations (Plotly bar charts and Seaborn heatmaps) facilitate exploratory analysis.Beyond 
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performance gains, the system’s modular architecture promotes maintainability and extensibility: new 

classifiers, preprocessing techniques, or visualization modules can be integrated with minimal 

disruption. The reliance on mature, open-source libraries (scikit-learn, Pandas, Matplotlib) and a 

lightweight SQLite backend further simplifies deployment and reduces overhead. Overall, this tool 

accelerates stellar classification workflows, enhances reproducibility, and democratizes access to 

advanced machine-learning capabilities for both researchers and educators in astronomy. 
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